Class 10 Mathematics – Complete Notes

Chapter 1: Real Numbers

- Summary
- Euclid's Division Lemma: किसी भी दो धनात्मक पूर्णांक a,b के लिए, a=bq+r, जहाँ $0 \leq r < b$
- Fundamental Theorem of Arithmetic: हर संख्या का unique prime factorization होता है।
- HCF और LCM prime factorisation या Euclid's Algorithm से निकाले जा सकते हैं।
- Formulas
- $HCF \times LCM =$ Product of numbers

Example

Find HCF of 56 and 72.

•
$$56 = 2^3 \times 7$$
, $72 = 2^3 \times 3^2$

• HCF =
$$2^3 = 8$$

Important Questions

- Find LCM and HCF of 26 and 91 by prime factorization.
- 2. Show that √2 is an irrational number.

Chapter 2: Polynomials

- Summary
- Linear polynomial: degree 1
- Quadratic polynomial: degree 2
- Cubic polynomial: degree 3

Relationship between zeros and coefficients:

Formulas

ullet For quadratic ax^2+bx+c : $lpha+eta=-rac{b}{a}, \quad lphaeta=rac{c}{a}$

Example

Find sum and product of zeros of $2x^2-5x+3$.

• Sum =
$$-\frac{-5}{2} = \frac{5}{2}$$

• Product =
$$\frac{3}{2}$$

- 1. If lpha and eta are zeros of $6x^2-7x-3$, find relation.
- 2. Form a quadratic polynomial whose sum and product of zeros are -1 and 4.

Chapter 3: Pair of Linear Equations

Summary

- ullet General form: $a_1x+b_1y+c_1=0$, $a_2x+b_2y+c_2=0$
- Graphical and algebraic methods available.

Condition of solutions

- Unique solution: $rac{a_1}{a_2}
 eq rac{b_1}{b_2}$
- Infinite solutions: $rac{a_1}{a_2}=rac{b_1}{b_2}=rac{c_1}{c_2}$
- No solution: $rac{a_1}{a_2} = rac{b_1}{b_2}
 eq rac{c_1}{c_2}$

Example

Solve by substitution:

$$2x + y = 5$$
; $3x - y = 5$

 $_{
ightarrow}$ Add: 5x=10, so x=2,y=1

Important Questions

1. Solve using elimination:

$$x + 2y = 7, 2x - 3y = 1.$$

 A boat goes 16 km downstream in 2 hrs and returns upstream in 4 hrs. Find speed of boat in still water and speed of stream.

Chapter 4: Quadratic Equations

- Summary
- Standard form: $ax^2 + bx + c = 0$
- Solution methods: Factorization, completing square, quadratic formula.
- Formula
- Roots: $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$
- ullet Discriminant $D=b^2-4ac$ decides

Example

Solve: $x^2-7x+12=0$ $_{\rightarrow}$ Factorization: (x-3)(x-4)=0 $_{\rightarrow}$ Roots = 3, 4

Important Questions

- 1. Solve $2x^2 7x + 3 = 0$.
- 2. Find quadratic equation whose roots are 2 and -3.

Chapter 5: Arithmetic Progression

- Summary
- Sequence with constant difference.

Formulas

•
$$a_n = a + (n-1)d$$

$$ullet$$
 $S_n=rac{n}{2}[2a+(n-1)d]$

Example

AP: 2, 7, 12,... Find 10th term.

•
$$a=2, d=5$$
 $\rightarrow a_{10}=2+(9)(5)=47$

Important Questions

- 1. Find sum of first 25 multiples of 8.
- 2. Which term of AP 3, 8, 13, ... is 78?

Chapter 6: Triangles

Summary

- · Similarity rules: AA, SAS, SSS.
- Areas ratio = square of corresponding sides ratio.

Theorems

ullet Pythagoras Theorem: $a^2+b^2=c^2$

Example

In \triangle ABC, DE || BC, AD=3, DB=2. Find AE/EC. \rightarrow By Basic Proportionality Theorem, $\frac{AD}{DB}=\frac{AE}{EC}\implies AE/EC=3/2$

- Prove: In a right triangle, square on hypotenuse = sum of squares on other two sides.
- 2. In ΔABC , $AD \perp BC$, prove $AB^2 = BD imes BC$.

Chapter 7: Coordinate Geometry

Summary

- किसी भी दो points के बीच distance, midpoint, section point find करने के लिए formulas।
- Useful in proving collinearity और finding centroid, coordinates इत्यादि।
- Formulas
- Distance formula:

$$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

$$M=\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2}
ight)$$

$$P=\left(rac{mx_2+nx_1}{m+n},rac{my_2+ny_1}{m+n}
ight)$$

Example

Find distance between A(2,3) and B(10,6).

$$d=\sqrt{(10-2)^2+(6-3)^2}=\sqrt{64+9}=\sqrt{73}$$

Important Questions

- 1. Find coordinates of the point dividing (2,3) and (10,6) in ratio 1:3.
- 2. If (1,2), (4,y), (x,6) are collinear, find x and y.

Chapter 8: Introduction to Trigonometry

Summary

- Trigonometric ratios of acute angle defined using right triangle.
- Relation between ratios → identities.

Ratios

$$\sin\theta = \tfrac{P}{H},\; \cos\theta = \tfrac{B}{H},\; \tan\theta = \tfrac{P}{B},\; \csc\theta = \tfrac{H}{P},\; \sec\theta = \tfrac{H}{B},\; \cot\theta = \tfrac{B}{P}$$

Identities

1.
$$\sin^2 \theta + \cos^2 \theta = 1$$

2.
$$1 + \tan^2 \theta = \sec^2 \theta$$

3.
$$1 + \cot^2 \theta = \csc^2 \theta$$

Example

Important Questions

1. Prove:
$$\frac{1+\tan^2 A}{1+\cot^2 A}=\tan^2 A$$
.

2. If $\cos A = 12/13$, find other trigonometric ratios.

Chapter 9: Applications of

Summary

- Heights and distances problems using trigonometric ratios.
- Angle of elevation: ऊपर देखने का कोण।
- Angle of depression: नीचे देखने का कोण।

Example

A 15 m high tower casts a shadow 20 m long. Find angle of elevation of sun.

$$an heta=15/20=3/4.$$
 So $heta= an^{-1}(0.75).$

- A balloon is observed at an angle of elevation 45° at height 50 m. Find distance of observer from foot of balloon.
- A man is standing 40 m away from building. Angle of elevation of top is 30°. Find height of building.

Chapter 10: Circles

Summary

Tangent: line touching circle at one point.

• Properties:

- Tangent ⊥ radius at point of contact.
- From an external point, two tangents can be drawn and they are equal.

Example

Two tangents are drawn to a circle of radius 5 cm from an external point whose distance is 13 cm from centre. Find length of tangent.

By Pythagoras:

$$x^2 + 5^2 = 13^2 \implies x^2 = 169 - 25 = 144 \implies x = 12$$

٠

Important Questions

- Prove: Tangents drawn from external point are equal.
- From point 10 cm away from centre of circle radius 6 cm, find length of tangent.

Chapter 11: Constructions

Summary

- Division of line segment in ratio.
- Tangents to circle from external point.
- Constructing similar triangles.

Important Questions

1. Divide a line segment of 9 cm in ratio 4:5.

Draw tangents to circle from a point 6 cm away from centre of circle radius 3 cm.

Chapter 12: Areas Related to Circles

Formulas

- Area of circle: πr^2
- ullet Area of sector: $rac{ heta}{360}\pi r^2$
- ullet Length of arc: $rac{ heta}{360} imes 2\pi r$

Example

Find area of sector of angle 60° in circle of radius 7 cm.

$$\frac{60}{360}\pi(7^2) = \frac{1}{6}\pi imes 49 = \frac{49\pi}{6}$$

- Find area of segment of circle radius
 14 cm, angle 90°.
- 2. Find length of arc subtending angle 120° at centre of circle radius 21 cm.

Chapter 13: Surface Areas and Volumes

Formulas

• Cube: TSA = $6a^2$, Vol = a^3

ullet Cuboid: TSA = 2(lb+bh+hl), Vol = lbh

• Sphere: TSA = $4\pi r^2$, Vol = $\frac{4}{3}\pi r^3$

ullet Cylinder: CSA = $2\pi r h$, Vol = $\pi r^2 h$

• Cone: CSA = $\pi r l$, Vol = $\frac{1}{3} \pi r^2 h$

• Hemisphere: CSA = $2\pi r^2$, Vol = $\frac{2}{3}\pi r^3$

Example

Find volume of cone of radius 7 cm, height 24 cm.

$$V=rac{1}{3}\pi r^2 h=rac{1}{3}\pi (49)(24)=1232\pi$$

Important Questions

- 1. Find volume of sphere of radius 7 cm.
- A solid metallic cylinder of height 15 cm and radius 7 cm is melted and recast into spheres. Find number of spheres radius 3.5 cm.

Chapter 14: Statistics

- Summary
- Mean, Median, Mode from grouped data.
- Formulas
- Mean: $ar{x} = rac{\Sigma f x}{\Sigma f}$

Median:

$$L + rac{(N/2-cf)}{f} imes h$$

Mode:

$$L+rac{(f_1-f_0)}{(2f_1-f_0-f_2)} imes h$$

Example

Find mean of following data:

x: 1, 2, 3, 4

f: 2, 3, 4, 1

$$ar{x} = rac{1 imes 2 + 2 imes 3 + 3 imes 4 + 4 imes 1}{10} = rac{2 + 6 + 12 + 4}{10} = 24/10 = 2.4$$

Important Questions

1. Find mode of data:

Class 0-10: 5, 10-20: 8, 20-30: 10, 30-40: 12, 40-50: 7.

2. Find median from data:

Class 0-10: 10, 10-20: 20, 20-30: 15,

30-40: 25, 40-50: 20.

Chapter 15: Probability

Summary

- Probability = chance of event happening.
- P(E)=\frac{\text{Number of favourable outcomes}}{\text{Total outcomes}}

Example

Find probability of getting head in coin toss.

$$P=\frac{1}{2}$$
.

- A card is drawn from pack of 52. Find probability of getting (i) red card (ii) face card.
- 2. Two dice are thrown. Find probability of getting sum = 7.